Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 13(1): 2779, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2276347

ABSTRACT

596 million SARS-CoV-2 cases have been reported and over 12 billion vaccine doses have been administered. As vaccination rates increase, a gap in knowledge exists regarding appropriate thresholds for escalation and de-escalation of workplace COVID-19 preventative measures. We conducted 133,056 simulation experiments, evaluating the spread of SARS-CoV-2 virus in hypothesized working environments subject to COVID-19 infections from the community. We tested the rates of workplace-acquired infections based on applied isolation strategies, community infection rates, methods and scales of testing, non-pharmaceutical interventions, variant predominance, vaccination coverages, and vaccination efficacies. When 75% of a workforce is vaccinated with a 70% efficacious vaccine against infection, then no masking or routine testing + isolation strategies are needed to prevent workplace-acquired omicron variant infections when the community infection rate per 100,000 persons is ≤ 1. A CIR ≤ 30, and ≤ 120 would result in no workplace-acquired infections in this same scenario against the delta and alpha variants, respectively. Workforces with 100% worker vaccination can prevent workplace-acquired infections with higher community infection rates. Identifying and isolating workers with antigen-based SARS-CoV-2 testing methods results in the same or fewer workplace-acquired infections than testing with slower turnaround time polymerase chain reaction methods. Risk migration measures such as mask-wearing, testing, and isolation can be relaxed, or escalated, in commensurate with levels of community infections, workforce immunization, and risk tolerance. The interactive heatmap we provide can be used for immediate, parameter-based case count predictions to inform institutional policy making. The simulation approach we have described can be further used for future evaluation of strategies to mitigate COVID-19 spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Testing , COVID-19/epidemiology , COVID-19/prevention & control , Workplace
2.
BMJ Open ; 11(7): e050473, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1315810

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of SARS-CoV-2 testing on shortening the duration of quarantines for COVID-19 and to identify the most effective choices of testing schedules. DESIGN: We performed extensive simulations to evaluate the performance of quarantine strategies when one or more SARS-CoV-2 tests were administered during the quarantine. Simulations were based on statistical models for the transmissibility and viral loads of SARS-CoV-2 infections and the sensitivities of available testing methods. Sensitivity analyses were performed to evaluate the impact of perturbations in model assumptions on the outcomes of optimal strategies. RESULTS: We found that SARS-CoV-2 testing can effectively reduce the length of a quarantine without compromising safety. A single reverse transcription-PCR (RT-PCR) test performed before the end of quarantine can reduce quarantine duration to 10 days. Two tests can reduce the duration to 8 days, and three highly sensitive RT-PCR tests can justify a 6-day quarantine. More strategic testing schedules and longer quarantines are needed if tests are administered with less-sensitive RT-PCR tests or antigen tests. Shorter quarantines can be used for applications that tolerate a residual postquarantine transmission risk comparable to a 10-day quarantine. CONCLUSIONS: Testing could substantially reduce the length of isolation, reducing the physical and mental stress caused by lengthy quarantines. With increasing capacity and lowered costs of SARS-CoV-2 tests, test-assisted quarantines could be safer and more cost-effective than 14-day quarantines and warrant more widespread use.


Subject(s)
COVID-19 , Quarantine , COVID-19 Testing , Computer Simulation , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL